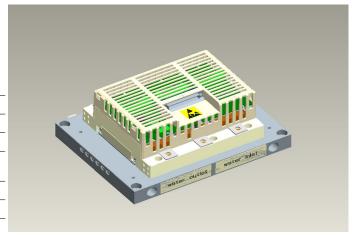
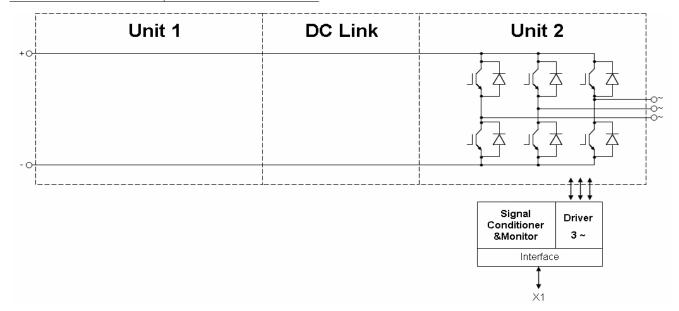
PrimeSTACK™

# 6PS04512E43W39693



### **Preliminary data**


### **General information**


### IGBT Stack for typical voltages of up to 500 $V_{\text{RMS}}$ Rated output current 300 A<sub>RMS</sub>

- High power converterSolar powerMotor drives

- · 62mm power module

| Topology                         | B6I                           |
|----------------------------------|-------------------------------|
| Application                      | Inverter                      |
| Load type                        | Resistive, inductive          |
| Semiconductor (Inverter Section) | 3x FF450R12KE4                |
| Heatsink                         | Water cooled                  |
| Implemented sensors              | Current, voltage, temperature |
| Driver signals IGBT              | Electrical                    |
| Design standards                 | UL 94, prepared for UL 508C   |
| Sales - name                     | 6PS04512E43W39693             |
| SP - No.                         | SP001129256                   |





| prepared by: OW | date of publication: 2013-08-05 |
|-----------------|---------------------------------|
| approved by: AR | revision: 2.0                   |

PrimeSTACK™

# 6PS04512E43W39693



### **Preliminary data**

### **Characteristic values**

| DC Link       |                 | min. | typ. | max. |   |
|---------------|-----------------|------|------|------|---|
| Rated voltage | V <sub>DC</sub> |      | 650  |      | V |

#### Notes

The voltage sensor VM110 is only used for measurement. It is realized no over-voltage shutdown.

| Inverter Section                                      |                                                                                                                                                                                                                                                   |                       | min. | typ. | max. |                   |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------|------|------|-------------------|
| Rated continuous current                              | $ \begin{vmatrix} V_{DC} = 800 \text{ V}, \ V_{AC} = 500 \text{ V}_{RMS}, \ cos(\phi) = 0.85, \\ f_{AC \text{ sine}} = 5 \text{ Hz}, \ f_{sw} = 2500 \text{ Hz}, \ T_{inlet} = 40^{\circ}\text{C}, \ T_{j} \leq 125 \text{ °C} \\ \end{vmatrix} $ | IAC                   |      |      | 300  | ARMS              |
| Continuous current at low frequency                   | $\begin{aligned} V_{DC} &= 800 \text{ V, } V_{AC} = 500 \text{ V}_{RMS}, f_{AC \text{ sine}} = 0 \text{ Hz,} \\ f_{sw} &= 2500 \text{ Hz, } T_{inlet} = 40 \text{ °C, } T_{j} \leq 125 \text{ °C} \end{aligned}$                                  | I <sub>AC low</sub>   |      |      | 220  | A <sub>RMS</sub>  |
| Rated continuous current for 150% overload capability | $I_{AC~150\%}$ = 330 $A_{RMS}$ , $t_{on~over}$ = 60 s, $t_{recovery}$ = 600 s, $T_j \le 125~^{\circ}C$                                                                                                                                            | I <sub>AC over1</sub> |      |      | 220  | A <sub>RMS</sub>  |
| Over current shutdown                                 | within 15 μs                                                                                                                                                                                                                                      | I <sub>AC OC</sub>    |      | 625  |      | A <sub>peak</sub> |
| Power losses                                          | $I_{AC}$ = 500 A, $V_{DC}$ = 800 V, $cos(\phi)$ = 0.85, $f_{AC  sine}$ = 5 Hz, $f_{sw}$ = 2500 Hz, $T_{inlet}$ = 40 °C, $T_{j}$ ≤ 125 °C                                                                                                          | P <sub>loss</sub>     |      | 2400 |      | W                 |

#### **Controller interface**

| Driver and interface board                              | ref. to separate Application Note                                         |                                  |      | DR210 |      |   |
|---------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------|------|-------|------|---|
|                                                         |                                                                           |                                  | min. | typ.  | max. |   |
| Auxiliary voltage                                       |                                                                           | V <sub>aux</sub>                 | 18   | 24    | 30   | V |
| Auxiliary power requirement                             | V <sub>aux</sub> = 24 V                                                   | P <sub>aux</sub>                 |      |       | 40   | W |
| Digital input level                                     | resistor to GND 10 kΩ, capacitor to GND 1 nF,                             | V <sub>in low</sub>              | 0    |       | 1.5  | V |
| Digital impactors.                                      | logic high = on                                                           | V <sub>in high</sub>             | 11   |       | 15   | V |
| Digital output level                                    | open collector, logic low = no fault, max. 15 mA                          | V <sub>out low</sub>             | 0    |       | 1.5  | V |
|                                                         |                                                                           | Vout high                        |      | 15    |      | V |
| Analog current sensor output inverter section           | load max 5 mA, @ 300 A <sub>RMS</sub>                                     | VIU ana2<br>VIV ana2<br>VIW ana2 | 4.7  | 4.9   | 5    | V |
| Analog DC link voltage sensor output                    | load max 5 mA, @ 900 V                                                    | V <sub>DC</sub> ana              | 6.4  | 6.5   | 6.6  | ٧ |
| Analog temperature sensor output unit 1 (NTC)           | load max 5 mA, corresponds to T <sub>j</sub> = 125 °C at rated conditions | VTheta NTC1                      |      | 4.9   |      | ٧ |
| Analog temperature sensor output inverter section (NTC) | load max 5 mA, @T <sub>NTC</sub> = 82 °C                                  | VTheta NTC2                      |      | 10    |      | V |

#### Notes

Over temperature shut down must be realized by customer.

| prepared by: OW | date of publication: 2013-08-05 |  |  |  |  |
|-----------------|---------------------------------|--|--|--|--|
| approved by: AR | revision: 2.0                   |  |  |  |  |

PrimeSTACK™

# 6PS04512E43W39693



### **Preliminary data**

| System data                     |                                                 |                                                      |                     | min. | typ. | max. |      |
|---------------------------------|-------------------------------------------------|------------------------------------------------------|---------------------|------|------|------|------|
| EMC robustness                  | according to IEC 61800-3 at named               | power                                                | V <sub>Burst</sub>  |      | 2    |      | kV   |
| Zivio robuotilooo               | interfaces                                      | control                                              | V <sub>Burst</sub>  |      | 1    |      | kV   |
|                                 |                                                 | aux (24V)                                            | V <sub>surge</sub>  |      | 1    |      | kV   |
| Storage temperature             |                                                 | ·                                                    | T <sub>stor</sub>   | -40  |      | 85   | °C   |
| Operational ambient temperature | PCB, DC link capacitor, bus bar, excludi medium | ng cooling                                           | T <sub>op amb</sub> | -25  |      | 55   | °C   |
| Cooling air velocity            | PCB, DC link capacitor, bus bar, standa         | PCB, DC link capacitor, bus bar, standard atmosphere |                     | 0.3  |      |      | m/s  |
| Humidity                        | no condensation                                 |                                                      | Rel. F              | 5    |      | 85   | %    |
| Vibration                       | according to IEC60721                           |                                                      |                     |      |      | 5    | m/s² |
| Shock                           | according to IEC60721                           |                                                      |                     |      |      | 40   | m/s² |
| Protection degree               |                                                 |                                                      |                     |      | IP00 | •    |      |
| Pollution degree                |                                                 |                                                      |                     |      | 2    |      |      |
| Dimensions                      | width x depth x height                          |                                                      |                     | 215  | 280  | 120  | mm   |
| Weight                          |                                                 |                                                      |                     |      | 7.7  |      | kg   |

| Heatsink water cooled     |                                                  |                    | min. | typ. | max. |         |
|---------------------------|--------------------------------------------------|--------------------|------|------|------|---------|
| Water flow                | according to coolant specification from Infineon | ΔV/Δt              | 10   |      |      | dm³/min |
| Water pressure            |                                                  |                    |      |      | 8    | bar     |
| Water pressure drop       |                                                  | Δρ                 |      | 50   |      | mbar    |
| Coolant inlet temperature |                                                  | T <sub>inlet</sub> | -40  |      | 40   | °C      |

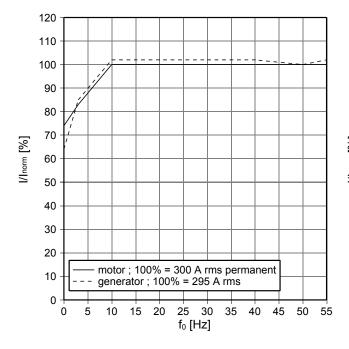
| Overview of optional components   | Unit 1 | Inverter<br>Section | Unit 3 |
|-----------------------------------|--------|---------------------|--------|
| Parallel interface board          |        |                     |        |
| Optical interface board           |        |                     |        |
| Voltage sensor                    |        | ×                   |        |
| Current sensor                    |        | ×                   |        |
| Temperature sensor                |        | ×                   |        |
| Temperature simulation            |        |                     |        |
| DC link capacitors                |        |                     |        |
| Collector-emitter Active Clamping |        |                     |        |

#### Notes

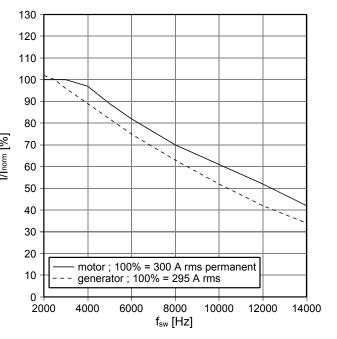
Setting of Active Clamping TVS-Diodes: Vz = 824 V

| prepared by: OW | date of publication: 2013-08-05 |
|-----------------|---------------------------------|
| approved by: AR | revision: 2.0                   |

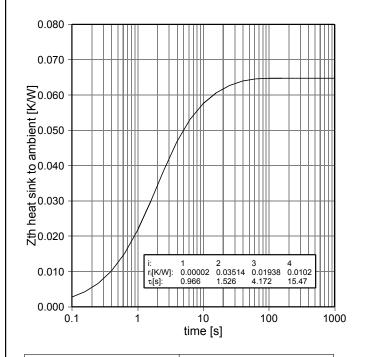
PrimeSTACK™


# 6PS04512E43W39693




### **Preliminary data**

fo - derating curve IGBT (motor), Diode (generator)  $cos(phi) = \pm 0.85$ 


 $T_{cool medium} = 40^{\circ}C$ 



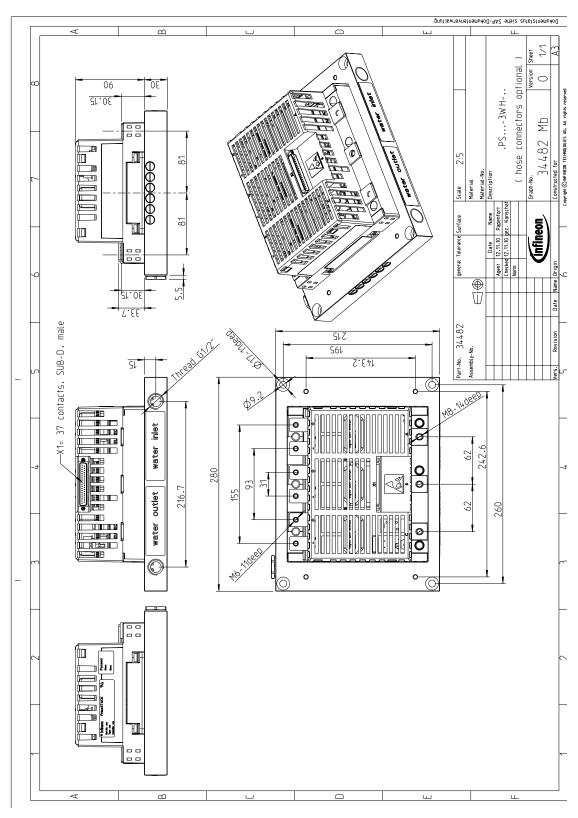
fsw - derating curve IGBT (motor), Diode (generator)  $cos(phi) = \pm 0.85$ T<sub>cool medium</sub> = 40°C



Zth heat sink to ambient per switch T<sub>cool medium</sub> = 40°C



| prepared by: OW | date of publication: 2013-08-05 |  |
|-----------------|---------------------------------|--|
| approved by: AR | revision: 2.0                   |  |


PrimeSTACK™

# 6PS04512E43W39693

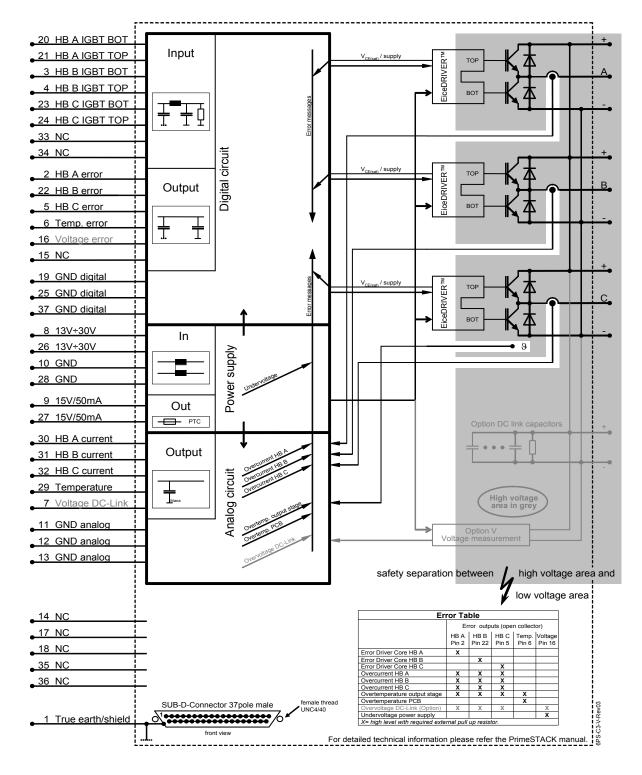


### **Preliminary data**

## **Mechanical drawing**



| prepared by: OW | date of publication: 2013-08-05 |
|-----------------|---------------------------------|
| approved by: AR | revision: 2.0                   |


PrimeSTACK™

# 6PS04512E43W39693



### **Preliminary data**

### Circuit diagram



| prepared by: OW | date of publication: 2013-08-05 |
|-----------------|---------------------------------|
| approved by: AR | revision: 2.0                   |

PrimeSTACK™

## 6PS04512E43W39693



### Preliminary data

#### **Terms & Conditions of usage**

The data contained in this product data sheet is exclusively intended for technically trained staff. You and your technical departments will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to such application.

This product data sheet is describing the characteristics of this product for which a warranty is granted. Any such warranty is granted exclusively pursuant the terms and conditions of the supply agreement. There will be no guarantee of any kind for the product and its characteristics.

Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of our product, please contact the sales office, which is responsible for you (see www.infineon.com, sales&contact). For those that are specifically interested we may provide application notes.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you.

Should you intend to use the Product in aviation applications, in health or live endangering or life support applications, please notify. Please note, that for any such applications we urgently recommend

- to perform joint Risk and Quality Assessments;
- the conclusion of Quality Agreements;
- to establish joint measures of an ongoing product survey, and that we may make delivery depended on the realization of any such measures.

If and to the extent necessary, please forward equivalent notices to your customers.

Changes of this product data sheet are reserved.

#### **Safety Instructions**

Prior to installation and operation, all safety notices and warnings and all warning signs attached to the equipment have to be carefully read. Make sure that all warning signs remain in a legible condition and that missing or damaged signs are replaced. To installation and operation, all safety notices and warnings and all warning signs attached to the equipment have to be carefully read. Make sure that all warning signs remain in a legible condition and that missing or damaged signs are replaced.

| prepared by: OW | date of publication: 2013-08-05 |
|-----------------|---------------------------------|
| approved by: AR | revision: 2.0                   |